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ABSTRACT ARTICLE HISTORY
Images provided by the European Copernicus Sentinel-2 satellites are Received 31 March 2025
valuable and easily accessible sources of remote sensing data for tasks Accepted 11 July 2025
across various fields. These data have a high spectral and temporal KEYWORDS
resolution, but a rather low spatial resolution, limiting their applicabil- Sentinel-2; Multi-spectral;
ity for many tasks. In agricultural tasks, such as crop monitoring of Super-resolution; Deep
small land parcels, the use of these data for fine-scale analysis is learning; Spectral validation
contingent upon the enhancement of spatial resolution while main-

taining spectral fidelity. In this work, we propose a comprehensive

single-image super-resolution reconstruction workflow that ensures

both properties and is divided into two parts. First, a deep learning-

based super-resolution reconstruction approach is applied to improve

the spatial resolution of multi-spectral Sentinel-2 images to 2.5 m. For

this purpose, a novel method is applied to achieve super-resolution of

multiple spectral bands where associated real-word reference data is

only partially available. It learns to increase the spatial resolution while

preserving spectral accuracy of 10 m bands using high-resolution data

from an auxiliary satellite with spectral correspondence, and 20 m

bands without reference data using synthetic Sentinel-2 pairs.

Second, the suitability of the method to subsequent agricultural

tasks is evaluated by measuring the discrepancy between the super-

resolved and reference data through a novel spectral knowledge-

based validation method. This method leverages mappings of reflec-

tances to spectral categories that enable assessing the spectral fidelity

of super-resolved outputs, which is complementary to existing image

quality assessment metrics, but with greater depth. The promising

spectral validation results suggest that our super-resolution recon-

struction pipeline has a great potential for agricultural applications.

1. Introduction

Evaluating the spectral signature of agricultural land in a timely manner has become a
crucial task in remote sensing to derive current quality measurements and enable automatic
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land monitoring. So far, this has been achieved with aerial and very high-resolution satellite
imagery, which is constrained by high costs, limited availability, and limited spectral and
temporal resolution. As a cost-effective alternative, remote sensing imagery with lower
spatial resolution but high spectral quality and availability such as Sentinel-2 (52) data is
used. However, for regions with small-structured agricultural landscapes like Austria, the
ground sampling distance (GSD) of S2 data, 10 m, 20 m or 60 m depending on the spectral
band, is insufficient to assess fine-scale features critical for specific agricultural tasks such as
land use classification.

Super-resolution reconstruction (SRR) can increase the data’s spatial resolution without
degrading their temporal and spectral quality to meaningfully employ S2 imagery for
such fine-scale applications. The requirement for temporal fidelity excludes the use of
multi-image SRR approaches that fuse spectral information of multiple datatakes and
prevent analysis of spectral changes over time. An alternative to these approaches is
single-image SRR that increases the spatial resolution of a single low-resolution (LR)
datatake image using high-resolution (HR) reference data. However, the availability of
such reference data is often restricted to Red, Green, Blue (RGB) and Near-Infrared (NIR)
bands, whereas agricultural applications require super-resolution across Red Edge (RE)
and Short Wavelength Infrared (SWIR) bands. Moreover, the high cost of acquiring HR
reference data necessitates a careful selection and compilation of high-quality samples to
train deep learning (DL) - based SRR approaches that learn the relationship between LR
and HR representations from data.

Once a DL-based SRR model has been trained and is capable of generating HR outputs,
a comprehensive and expressive evaluation framework is required to assess the model’s
applicability to subsequent agricultural tasks. Traditional accuracy metrics such as the
peak signal-to-noise ratio (PSNR) and the mean squared error (MSE) primarily focus on
intensity differences by measuring Euclidean distances between the spectral signatures of
reference data and SRR outputs. However, relevant spectral inconsistencies are not
necessarily discoverable by employing aggregative distance metrics. Starting from a
given spectral signature, a multivariate displacement vector by a given metric distance
x can have different implications depending on its orientation. For the same x, the
resulting spectral signature can either (a) still characterize the same land use/cover
type, (b) reflect a different land use/cover type or (c) transform the given signature
towards a physically implausible signature. These different types of changes allow for
different conclusions to be drawn about the SRR capabilities of a model, and they will
have different impacts on downstream models, e.g. for land cover or land use classifica-
tion. Therefore, they should be given different significance in the evaluation of SRR results
despite the same distance-metric change. Consequently, we argue that there is a need to
explicitly assess the spectral fidelity of SRR outputs and to provide means for interpreting
possible systematic biases of SRR outputs semantically.

To address the above challenges, we propose a pipeline that is holistic in nature, as it
integrates both a DL-based single-image SRR approach and an extensive spectral valida-
tion framework, thereby providing a comprehensive method to assess the SRR-applic-
ability for follow-up agricultural tasks. Our SRR method integrates two complementary
convolutional neural networks (CNNs) to increase the spatial resolution of the 10 m and
20 m bands of S2 data to 2.5 m while preserving its high spectral quality. Similar to related
works (Galar et al. 2020; Romero, Luis, and Vilaplana 2020) that target SRR between
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matching 10 m S2 and HR bands from a different sensor, our first model super-resolves
the four 10 m bands and learns the SRR mapping using co-registered HR PlanetScope
SuperDove (SD) data (Planet Labs PBC 2024). More than that, we extend the SRR capability
of our approach by employing a second model, that is trained to upscale six 20 m bands
without associated HR references utilizing synthetic S2 pairs, guided by additional HR
input data. Exemplary output of our SRR approach is illustrated in Figure 1. The suitability
of the SRR pipeline for subsequent tasks is evaluated by the knowledge-based spectral
categorization system called Satellite Image Automatic Mapper (SIAM) (Baraldi 2011). It
allows capturing spectral changes between reference and reconstructed data according
to predefined, human-interpretable categories, and is capable of augmenting the seman-
tic depth of existing image reconstruction quality metrics. We present promising results
utilizing the SIAM system, which indicates that our SRR pipeline has a high potential for
subsequent agricultural applications.

Our contributions can be summarized as follows:

« We introduce a novel combination of two CNN-based single-image SRR models for
enhancing the spatial resolution of ten S2 bands with GSDs of 10 m representing RGB
+NIR and 20 m displaying RE+SWIR spectra. This combination captures LR and HR
relationships from both real-word and simulated pairs, providing a greater alignment
with observed data than methods trained entirely on artificially generated pairs. More
specifically, our approach learns to super-resolve RGB+NIR bands using a limited
amount of HR SD reference data. Furthermore, the RE+SWIR bands’ SRR mapping is
learned from synthetic S2 data, and their spatial structure is improved by HR RGB+NIR
images as additional input.

+ We demonstrate how our knowledge-based, interpretable evaluation approach
substantially expands the informative value of existing metrics for image recon-
struction quality. Leveraging the SIAM framework, we gain systematic qualitative

B02-04 (4x) BO5 (8x) B11 (8x)

Figure 1. Exemplary output from our SRR approach (bottom row) compared to the S2 input (top row).
The output spatial resolution is 2.5 m for all 10 m and 20 m bands, increasing the spatial resolutions of
input bands B02, B03, B04 (RGB) and B08 (NIR) by a factor of 4 and of all RE and SWIR bands by a factor
of 8.



7440 (&) D.MAJORET AL.

as well as quantitative insights into the spectral fidelity of the SRR outputs.
Analyses are performed at various levels of aggregation, showcasing the flexibility
of our framework to derive high-level summaries as well as in-depth evaluations
of the reconstruction quality.

2. Related work
2.1. Remote sensing super-resolution reconstruction

SRR aims to reconstruct a fine-grained HR image from an LR image with coarse details
(Anwar, Khan, and Barnes 2020). Classical approaches (Yang et al. 2010; H. Zhang and
Huang 2011) were recently superseded by DL methods (Dong et al. 2016; Kim, Kwon Lee,
and Mu Lee 2016; Lim et al. 2017) due to various reasons. DL-based approaches auto-
matically learn meaningful features from data as opposed to hand-crafted features
designed by experts for classical methods. Moreover, DL-based approaches are capable
of achieving higher performance by leveraging more advanced algorithms in combina-
tion with deeper network architectures and have become computationally efficient
through the explosion of Graphical Processing Unit (GPU) availability (Tsagkatakis et al.
2019). In the context of remote sensing, single-image SRR maps an LR image of a single
datatake to its HR version, whereas within multi-image SRR, LR images of multiple
datatakes are mapped to a single or multiple HR-reconstructed versions (Razzak et al.
2023). In addition, satellite images appear in different resolutions covering multiple
spectral bands, most commonly RGB and NIR followed by bands capturing higher wave-
lengths. In light of the aforementioned benefits, this work addresses a DL-based single-
image multi-spectral SRR approach, and related work is discussed in detail below.

2.1.1. Single-image super-resolution

One potential approach for training a super-resolution DL model is to utilize a supervised
setup with co-registered LR/HR images of analogous spectral bands from satellites with
different image resolutions. Galar et al. (2020) utilize co-registered S2 and PlanetScope (PS)
imagery to learn the SRR mapping from a GSD of 10 m to 5m and 2.5 m of RGB and NIR
bands and apply enhanced deep residual networks (EDSRs) (Lim et al. 2017) as a DL model.
Romero, Luis, and Vilaplana (2020) propose a method using a generative adversarial net-
work (GAN) to super-resolve RGB and NIR bands of S2 images by a factor of 5 utilizing
reference data from the Worldview satellites. They employ the architecture of the enhanced
super-resolution generative adversarial network (ESRGAN) (X. Wang et al. 2019) and out-
perform related SRR methods using standard image quality assessment (IQA)-metrics. Tao
et al. (2021) follow a similar GAN-based approach to enhance RGB optical imagery from the
ExoMars Trace Gas Orbiter by a resolution magnification factor of 4. They use images from
the Mars Reconnaissance Orbiter for reference and present a modified SRR model that
contains architectural building blocks of the ESRGAN (X. Wang et al. 2019) and the ESRGAN+
(Rakotonirina and Rasoanaivo 2020) in order to achieve high-quality SRR results. Wolters,
Bastani, and Kembhavi (2023) compare the performance of DL-based methods for 4x SRR
of S2 images using HR aerial NAIP images. They mainly investigate multi-temporal RGB S2
samples as input, but pass them aggregated to well-established single-image approaches
such as SRCNN (Dong et al. 2016) and ESRGAN (X. Wang et al. 2019). The performance of
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these models is compared to a novel diffusion-based technique called SR3 (Ho, Jain, and
Abbeel 2020). Moreover, they evaluate the SRR outputs by downstream tasks and conclude
that both ESRGAN and SR3 generate higher-quality images than the other methods, but the
former achieves better accuracy for the downstream task and is better at avoiding incorrect
or misleading results.

2.1.2. Multi-spectral super-resolution
Images captured by specific satellites offer a rich multi-spectral resource of informa-
tion, such as the thirteen bands provided by the S2 satellites of the European
Copernicus programme. However, such spectral abundance is not common in satel-
lite imagery, making the problem of supervised SRR infeasible for certain spectral
bands. Therefore, recent research focuses on methods where SRR is solved partially
without access to LR/HR image pairs. The DSen2 approach of Lanaras et al. (2018)
super-resolves the S2 bands having 20 m and 60 m GSD to the RGB band resolution
of 10m using a CNN with residual blocks. They create synthetic LR/HR pairs for
training where original images are downscaled, train the SRR model with the gener-
ated pairs and apply the model to the original images assuming self-similarity of
relations between bands of different resolutions within a certain scale-range.
Salgueiro, Marcello, and Vilaplana (2021) propose an extension to the above method
by modifying the CNN architecture. Vasilescu, Datcu, and Faur (2023) extend the
same method by adding a consistency and a synthesis term to the loss to ensure
that the degraded version of the model output matches the input and vice versa.
Similar to our approach, there are methods that address both, super-resolving by
factors of up to 8 and focusing on SRR of the majority of spectral bands (not just
RGB and NIR), but with different configurations and architectures compared to our
work. Gupta, Mishra, and Zhang (2024) present a method for multi-spectral fusion
and SRR of S2 images with 10 m and 20 m GSD. Their network architecture consists
of two encoder blocks, one for each resolution, a feature fusion module, a generative
latent bank captured by a StyleGAN (Karras et al. 2020), and a pixel attention-guided
decoder block at the end. Unlike our pipeline, which super-resolves images 4x and
8%, their SRR method is designed for magnification factors of 2 and 4 and is trained
by the SEN2VENuS dataset (Michel et al. 2022). Tarasiewicz et al. (2023) extract data
along the temporal dimension in addition and apply multi-spectral fusion to S2 data.
First, data are fused along the temporal axis, followed by fusion of the spectral
bands, and ultimately, the data are super-resolved by convolution and pixel shuffling
layers. Their DeepSent pipeline super-resolves images by factors of 3, 6 and 18, and
in contrast to our work, it is trained completely by simulated LR/HR S2 image pairs.
The method for joint SRR of S2 10 m and 20 m GSD spectral bands introduced by
Latte and Lejeune (2020) is the closest to our work. Their SRR network achieves a 4x
and 8x upscaling depending on the resolution. It is trained by synthetic LR/HR S2
pairs and receives four 10 m GSD bands and six 20m GSD bands from S2 data as
input. It is then transformed and upsampled by standard and sub-pixel convolutions
and finally fused with PS images. The output is processed by four further residual
dense blocks to obtain the final SRR results. Contrary to our work, their model
expects images from both S2 and PS as input for inference.
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2.2. Evaluation of SRR models

Different approaches can be distinguished for evaluating SRR models (P. Wang, Bayram,
and Sertel 2022; Z. Wang, Chen, and Hoi 2020), all falling under the broader category of
IQA. The first and, so far, dominant branch of methods focuses on evaluating SRR
performance in a full-reference scenario, meaning with the use of a reference image.
Commonly used metrics in this context are MSE and PSNR. Both measure pixel-wise
differences between the SRR image and the reference image. Despite their simplicity
and widespread use, these pixel-wise, distance-metric-based measures have been criti-
cized for their poor correspondence with human perception and their sensitivity to small
spatial translations (Z. Wang and Bovik 2009). Working towards more perceptually moti-
vated distances, the similarity index measure (SSIM) (Z. Wang et al. 2004) leverages
statistics computed within a moving window to compare images in terms of luminance,
contrast and structural patterns. Furthermore, DL-based metrics, using latent space
representations of pre-trained networks, have been proposed as effective perceptual
metrics. The learned perceptual image patch similarity (LPIPS) (R. Zhang et al. 2018a) is
one of them, highlighting the increasing importance of perceptual quality assessments
(Blau et al. 2019). However, all of the previously mentioned metrics lack a focus on spectral
reconstruction capabilities relevant and specific to the remote sensing domain.

Only recently have quality assessment frameworks been tailored to remote sensing,
going beyond the current set of general-purpose metrics. Aybar et al. (2024) propose a
protocol focused on assessing consistency, synthesis and correctness properties of SRR
images. In the realm of consistency, they differentiate between metrics for reflectance,
spectral and spatial consistency. Even so, employing MSE for reflectance consistency and
spectral angle distance for spectral consistency does not acknowledge domain-specific
expertise on the physical meaning of spectral signatures.

The complex relationship between phenomena observed on Earth’s surface and their
band-specific reflectance is not captured by measuring distances and angles uniformly
across bands. Since the meaning and validity of a spectral signature mainly depends on its
overall shape, inter-band relationships independent of absolute reflectances should be
taken into account for assessing multi-spectral SRR capabilities. Additionally, means to
characterize the observed reflectance deviations semantically are largely missing with the
current set of metrics. A mere quantification of differences itself does not provide any
further means of describing and categorizing the nature of these differences.

The second branch of methods evaluates SRR models indirectly via a downstream
task. In the field of remote sensing, Razzak et al. (2023) and Chen et al. (2023) assess
the effect of SRR models on the task of building footprint extraction, Li et al. (2021)
and Xie et al. (2022) investigate the potential added value for land cover classification,
and Kawulok et al. (2024) evaluate hyper-spectral SRR for the prediction of soil
nitrogen content, water quality and air pollution. While these evaluation approaches
are more orientated towards assessing the practical value of the SRR data, they are
inherently very specific to single applications. This makes the downstream approach
poorly suited as a general means for comparing the performance of different SRR
models. One would need an extensive benchmark with a set of diverse downstream
tasks to obtain robust evidence for the overall performance of an SRR model. In
addition, standardized models would have to be kept available in such a benchmark
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and these would also have to be calibrated using reference data, as systematic biases
could not be uncovered if a downstream model was retrained only using the SRR data.
Finally, it should be noted that downstream model-based evaluations again provide
limited possibilities for characterizing the flaws of a given SRR model. High-level
descriptions of SRR behaviour on downstream tasks may be insightful for the corre-
sponding application domain, but offer few starting points for diagnosing the original
SRR model and its spectral reconstruction capabilities. A knowledge-based, spectral
categorization approach, as a preliminary stage of a downstream classification task,
offers an adequate substitute to address the described weaknesses and to evaluate an
SRR model with regard to its downstream capacities while remaining application-
independent.

2.3. Knowledge-based spectral categorisation of remote sensing imagery

Classification of remote sensing imagery based on expert knowledge of spectral signa-
tures is a long-standing field (Ton, Sticklen, and Jain 1991; Wharton 1987). A relevant
driver of knowledge-based approaches was the emergence of Object-Based Image
Analysis (OBIA) (Blaschke 2010) that extended previously prevailing approaches with a
focus on pixel-based spectral characteristics by fostering the inclusion of knowledge on
spatial and contextual object properties. In practice, it is common to encode any remote-
sensing-specific knowledge about entities of interest into deterministic rule-sets repre-
senting knowledge bases. However, such knowledge bases are usually unsuitable for the
purposes of general SRR evaluation, as they are often application-specific. They usually
lack a mutually exclusive and collectively exhaustive classification design, or they have an
unbalanced semantic depth of the different classes, orientated towards the specifics of
the respective task. Moreover, many knowledge-based approaches are sensor-specific.
This amounts to a lack of transferability of classification rules between different sensors,
which is an inherent necessity when evaluating SRR.

With SIAM, Baraldi (2011) introduces an algorithm that generates application-agnostic
categorizations of multi-spectral data in a fully automated manner using a knowledge-
based decision tree. Operating as a point-wise operator, it maps reflectances into a
discrete and finite vocabulary of semi-symbolic spectral categories. The categories’ sym-
bolization is indicative of the colour perceived by the human eye. The categories’
descriptions capture definite properties of their specific underlying spectral signature in
words. This makes the reflectances interpretable by humans. SIAM was validated on
spatial data at a continental-scale (Baraldi et al. 2018a, 2018b) and has been leveraged
in a variety of knowledge-based downstream systems. This includes prototypical imple-
mentations (Arvor et al. 2021) and operational semantic data cubes (Sudmanns et al.
2021). Comparable knowledge-based categorization systems with multi-sensor capabil-
ities, like IMPACT (Simonetti, Marelli, and Eva 2015), are less established, and their outputs
are more granular regarding the number of categories.

We integrate SIAM into our SRR evaluation framework in order to retain the flexibility
and applicability of task-independent evaluations (as described in Section 2.2) while
providing more extensive, expert knowledge-grounded insights into SRR model perfor-
mance. This not only benefits model benchmarking and diagnostics, but can also be used
to derive insights into expected success when using the SRR model in different
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downstream domains. In terms of evaluation scope, the proposed approach can therefore
be understood to stand between both of the branches of current evaluation methods -
the full reference, task-independent approach and the downstream evaluation as detailed
in the previous section. In terms of evaluation depth and foundation, the proposed
approach complements current methods by introducing a novel, remote-sensing-specific,
knowledge-based evaluation process.

3. Super-resolution reconstruction

In this section, we give an overview of our approach to single-image multi-spectral SRR of
S2 data super-resolving bands with both 10 m and 20 m GSDs. We start with the prepara-
tion of input data required for training in Section 3.1, continue with the description of
building blocks of our multi-spectral SRR pipeline (from Section 3.2 to Section 3.4) and
present the implementation details in Section 3.5.

3.1. Input data

Our technique is designed to super-resolve LR data in the form of Sentinel-2 (S2) Level-2A
imagery without the need for HR reference data as input during inference. This is
accomplished in two separate passes for the 10 m and 20 m bands, as explained below.
The reason for this is that the SRR of S2 10 m bands can be guided by very high-resolution
data provided by PlanetScope SuperDove (SD) Level-3B data with a GSD of 3 m. In order
to serve as a reference for SRR training, the LR and HR data require a very high degree of
spectral, spatial and temporal correspondence.

3.1.1. Spectral correspondence

The spectral bands present in both S2 and SD data are listed in Table 1. Of the eight SD
bands, six correspond to S2 bands, but we disregard the S2 aerosol band because of its
GSD of 60 m and its limited use for land cover assessment. In terms of wavelength range,
the Blue, Green and Red bands correspond sufficiently well between the two imagery
products. The NIR band of SD is much narrower than the S2 BO8 and corresponds more

Table 1. Overview of spectral bands of the input data and exploited
correspondences between products (blue).

Red B04
Red Edge B05 (698 — 713nm, 20m

(650 — 680 nm, 10m)
( )
Red Edge BO6 (733 — 748 nm, 20m)
( )
( )

650 — 680 nm
697 — 713nm

Name S2 (Range, GSD) SD (Range)
Aerosol BO1 (433 — 453 nm, 60m) Bl (431 — 452 nm)
Blue B02 (458 — 523nm, 10m) (465 515nm)
Green 1 - 3 (513 — 549 nm)
Green B03 (543 — 578 nm, 10m) (547 583nm)
Yellow - (600 — 620 nm)
( )
( )

B5
B6
B7
Red Edge B07 (773 — 793 nm, 20 m -
NIR B08 (785 — 900 nm, 10 m
Narrow NIR ~ B8A (855 — 875nm, 20m) | B8 (845 — 885nm)
Water Vapor — B09 (935 — 955 nm, 60 m) -
SWIR/Cirrus  B10 (1360 — 1390 nm, 60 m) -
SWIR1 B11 (1565 — 1655 nm, 20 m) -
SWIR2 B12 (2100 — 2280 nm, 20 m) -
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closely to S2's Narrow NIR band B8A, which has a GSD of 20 m. This means that the
important S2 10 m band B08 does not have a perfectly corresponding band in SD, but
since the wavelength range of SD B8 is completely contained within S2 B08, we still use
SD B8 as reference data for the SRR of S2 B08, as indicated with blue colouring in Table 1.
Besides B8, B7 is the only other SD band corresponding to a 20 m band of S2. While it
would be possible to incorporate this band as reference data for S2 B05, we would need to
treat this band differently from all other S2 20 m bands that do not have corresponding
HR data. Instead, we disregard the SD band B7 for supervised training and opt for a unified
approach across all S2 20 m bands by using synthetic data.

3.1.2. Spatial correspondence

For training of the RGB+NIR SRR, we focus on two areas of interest of size 24 x 24 km in
Austria (see Figure 2), coinciding with the SD grid cells 33N_17E-215N and 33N_23E-222N,
which are contained completely within S2 granules 33TVM and 33UWP, respectively. The
first area of interest encompasses an alpine region characterized by forests and pastures,
while the second area of interest is predominantly composed of flat agricultural land, as
illustrated by the example in Figure 1. Visual inspection revealed that within these
regions, geographic features between the two imagery products are not always perfectly
aligned, preventing a correct input pairing for supervised training. This is why we apply a
non-linear co-registration of the SD data onto the S2 true-colour image using the AROSICS
(Scheffler et al. 2017) approach integrated in the Coregistration plugin for QGIS (Llano
2021). The co-registration already introduces a resampling step with nearest-neighbour
interpolation, so, similar to Galar et al. (2020), we decided to also change the spatial
resolution of the SD data from a GSD of 3 m to 2.5m, which we define as the target
resolution for our SRR approach. This enables a more convenient SRR of the S2 10 m and
20 m bands with an integer magnification factor of 4 and 8, respectively.

Figure 2. Map of the two areas of interest (red) within Austria, coinciding with SD granules and
contained within the S2 granules (blue).
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3.1.3. Temporal correspondence

We maximize correspondence between LR/HR training data pairs by considering only
granules of datatakes at the same date during the year 2021. This minimizes the
change in soil and vegetation conditions between the two imagery products.
Furthermore, we exclude all pairs of granules that exhibit a cloud or snow cover of
more than 10% within the areas of interest using the semantic EO data cube approach
(Augustin et al. 2019). This leaves 21 and 34 pairs of granules of the highest quality for
the two areas of interest.

3.1.4. Patch subdivision

For patch-wise training, we separate the selected image data into individual bands and
subdivide them into patches of 1280 m x 1280 m size, i.e. 512 px x 512 px for all SD
bands, 128 px x 128 px for S2 10 m bands and 64 px x 64 px for 52 20 m bands. In order to
make the training invariant to the placement of patch borders, we introduce an overlap of
160 m, i.e. 64 px for SD, 16 px for S2 10 m and 8 px for S2 20 m, between neighbouring
patches on all sides. Finally, we mark patches as invalid and exclude them if any band of
the corresponding pair of granules exhibits more than 1% null values, which happens
mostly at the borders of datastrips. In total, we obtain 11,463 valid patches of correspond-
ing S2 and SD data for SRR of S2 10 m bands. This number is relatively low and is due to
the costly procurement of SD data, but the training data exhibits high quality resulting
from their careful selection. As the SRR of S2 20 m bands does not require HR data, we are
not limited to the area of the two defined SD grid cells, but can use the entire data of the
S2 granules. Performing the same patch subdivision results in a second dataset containing
288,647 patches.

The patches of both sets are split into training, validation and test sets with a ratio of
8:1:1. This means that there are 8988 training, 1240 validation and 1235 test pairs of S2
and SD patches for SRR of the 10 m S2 bands. For the SRR of the 20 m S2 bands, 230,722
training, 28,892 validation and 29,033 test patches are considered. We follow a random
sampling strategy for assigning patches to each of the groups, aiming to maximize
heterogeneity of surface representation in each set and to avoid spatial and temporal
overlaps between them. The assignment algorithm starts by selecting a random patch
and all direct neighbour patches. It then collects corresponding valid patches that do not
contain artefacts such as clouds or snow across all datatakes of the dataset. The samples
are assigned to the appropriate group and the process is repeated until the target split
ratio is reached for all groups - training, validation and test. The sampling process is
depicted in Figure 3.

3.2. SRR of RGB+NIR bands

Utilizing the RGB and NIR images of SD A = {B2sp, B4sp, B6sp, B8sp} with a GSD of 2.5 m
as references, our first step super-resolves the corresponding 10 m GSD spectral images of

S2 B = {B02s,,B03s,,B04s,,B08s,} by a factor of 4. Further, let y, € R"*"** and

Ys € R&*ix4 be the observed intensities of all bands contained in sets A, B. Hence, we
are seeking the function
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Figure 3. Overview of sampling valid patches that are distributed into training, validation and test
sets.
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where xg € RY*#** denotes the super-resolved bands of B with 2.5 m spatial resolution.
Modelling the SRR function F 4, of Equation 1 is straightforward by CNN architectures. As
mentioned by Y. Zhang et al. (2018b), residual and dense connections help within CNNs to
make use of hierarchical feature handling from the LR image to the HR output. Residual
connections support feature reuse, while dense blocks are inserted for feature explora-
tion. For these reasons, we employ a SRR network architecture containing residual-in-
residual dense blocks (RRDBs) followed by upsampling and convolution layers proposed
by Rakotonirina and Rasoanaivo (2020). Due to the excellent satellite image SRR perfor-
mance of GANs (Romero, Luis, and Vilaplana 2020; Wolters, Bastani, and Kembhavi 2023),
we follow the work of X. Wang et al. (2019) and Rakotonirina and Rasoanaivo (2020) and
obtain our RGB+NIR SRR model using the ESRGAN+ architecture, consisting of a generator
and a discriminator network that are trained jointly to achieve high-quality image recon-
struction. Consequently, the SRR loss function Lsgg consists of a perceptual dissimilarity
term Lperc, a GAN term £39. (see Equation 3), and a pixel-wise mean absolute error (MAE)
Lpix. The loss function is formulated by

Lsrr = Lperc + AL + yLpix. (2)

The contribution of the loss terms in Equation 2 is controlled by the scaling factors A and y.
To obtain Lper, the MAE is computed between feature outputs of the SRR result and the
HR image using a pretrained CNN like the VGG model (Simonyan, Zisserman, and
Zisserman 2014).

Following X. Wang et al. (2019), a relativistic average discriminator Dg, is utilized to
compute E?gR. It estimates the probability of a real (reference) image being considered
relatively more realistic than fake (SRR) images by Dga(y4, Xg) = 0(C(y,) — Exs~x,[C(X5)])
and vice versa. y, and xg denote our SD reference (real) and SRR (fake) images with their
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respective sets Y4 and X the sets of our reference and SRR images, o(.) the sigmoid
activation function, C(.) the linear output, and E, ~y, and Ey, - x, the expectations over

reference and SRR images. Finally, £59; is obtained by the formula

L3 = —Ey,~3,[109(1 = Dra(Ya.X8))] — Exg~;[109(Dra(Xs,Y4))]- 3)

Besides Lsgr, the adversarial version of L5, denoted by £} is optimized in an extra step
in order to train the discriminator Dg,. For more details, refer to X. Wang et al. (2019).

3.3. SRR of RE+SWIR bands

In addition to the 10 m GSD RGB+NIR S2 bands, we aim to reconstruct the 20 m GSD S2
images C = {B05s,, B06s,,B07,, B8As,,B11s,, B125,} by a factor of 8. Since there are no
references available for these bands, we rely on the already reconstructed RGB+NIR data

xp (see Equation 1. Let y € R#*5%% be the observed intensities of all bands contained in
set C. Formally, we are seeking the function

W H
-7:8x . RWXHX4 X RBXSXG N RWXHXﬁ

; 4
(Xe. yo)xc, @

where x¢ € R"Y*"*6 denotes the super-resolved bands of C with a 2.5 m spatial resolution.
As stated above, HR reference images are missing to build a model for Fg, in Equation 4
Following the idea of transferability of resolution relationships due to self-similarity intro-
duced by Lanaras et al. (2018), we downsample y, during training by a factor of 2 and y by
a factor of 8 to create synthetic versions y, and y. (see Downsampling in Figure 4a).
Consequently, the network learns the SRR relationship (yg,y-)—Xc during training,
where X¢ = y., which is then applied to (xz, y)—Xc during inference. As the basis for y;,
we rely on the extensively available S2 reference data (see Section 3.1) during training and
use the original 10 m bands y; instead of reconstructed 2.5 m bands xz. To build a model for
Fgx in Equation 4, we apply the EDSR-like (Lim et al. 2017) network architecture using
residual connections that was utilized by the DSen2 approach of Lanaras et al. (2018). After
feeding the inputs, as a pre-step, the network upsamples the input y. using bilinear
interpolation to the size of y;. As the loss function, we use the pixel-wise MAE between
the reference image and the SRR result.

3.4. Multi-spectral SRR pipeline

As outlined in Section 3.2, the RGB+NIR SRR network facilitates a complex GAN-based
design in order to learn a high-quality mapping between structures and to preserve the
spectral properties of the reference data. Conversely, the RE+SWIR SRR network described
in Section 3.3 utilizes a more compact design, as spatial structure can be directly inferred
from an additional input containing HR data. A schematic overview of the training process
for our multi-spectral SRR pipeline is presented in Figure 4a. Training of the two networks
can be done in parallel. The RGB+NIR SRR network uses S2 data y; as input and SD data y,
as the reference. The RE+SWIR SRR network uses synthetic downscaled versions y; and y
of the RGB+NIR bands of S2, denoted by y, and the RE+SWIR bands of S2, denoted by y,,
as inputs. Moreover, it uses the original data y. as the reference to obtain the trained
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Figure 4. Schematic overview of the training (a) and inference (b) pipelines for the RGB+NIR and RE
+SWIR bands. (a) To train the RGB+NIR SRR network, corresponding bands from (A) SuperDove and (B)
Sentinel-2 patches are used. Training the RE+SWIR network depends only on Sentinel-2 data ((B) and
(C)). SuperDove patches (A) serve only as reference and Sentinel-2 ones (C) are used as both training
and reference data. (b) To super-resolve the RGB+NIR bands, only the original (B) Sentinel-2 RGB+NIR
bands are required. The output from this step is then used as input for the RE+SWIR SRR model along
with the original (C) Sentinel-2 RE+SWIR bands.

weights of the network. During inference (depicted in Figure 4b), first, a ten-band S2
patch with bands from sets B and C is extracted and is divided into two image sets y; and
yc. Next, the RGB+NIR SRR is applied to y; which generates xg, and subsequently the RE
+SWIR SRR model yields x¢ from the inputs xz and y.. The final SRR result for a queried
ten-band S2 patch is formed by (xg, X¢).

3.5. Implementation

Following Rakotonirina and Rasoanaivo (2020), the RGB+NIR SRR network consists of 23
RRDBs from the ESRGAN+ architecture. In addition, Gaussian noise is added to the output
of each residual dense block using the nESRGAN+ version as our final architecture. It is
trained in a first phase with a batch size of 4 using the pixel loss Lp; for 1M iterations with
a learning rate of 2 x 10~* decayed by 0.5 after 200K, 400K, 600K and 800K iterations. In a
second phase, the generator is initialized by the trained weights of the first phase and
GAN training (c.f. Equation 2) is utilized. Here, £52. is scaled by A = 0.005, Lp is scaled by
y = 0.01, and for Lpe an ImageNet-pretrained VGG19 model (Simonyan, Zisserman, and
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Zisserman 2014) is applied. Lpe is calculated as the sum of the RGB-based and NIR-based
perceptual loss terms. We have found empirically that computing the features at the
twelfth convolution layer level of the VGG19 leads to better SRR performance than at the
sixteenth level as proposed by X. Wang et al. (2019). The second training phase is
executed for 500K iterations using a learning rate of 1 x 10~* decayed by 0.5 after 50K,
100K, 200K and 300K iterations. At inference, final SRR images are generated using
averaged trained weights from the first and the second training phases as proposed by
X. Wang et al. (2019).

Following Lanaras et al. (2018), the RE+SWIR SRR network consists of a convolutional
layer and a RelLU activation at the start, followed by 6 residual blocks and another
convolutional layer at the end with a skip connection. Each residual block contains 2
convolution layers with a ReLU in between, followed by a residual scaling of 0.1 and an
addition of the skip connection in the end. The network is trained with a batch size of 128
for 3.5M iterations using a learning rate of 7 x 10~* and the weights with the highest
validation PSNR are selected for inference.

The (GDAL/OGR contributors 2025) Python library was used to prepare our image data
for further processing, and PyTorch (Paszke et al. 2019) was utilized to implement the
training and inference routines of our multi-spectral SRR pipeline.

4. Spectral evaluation

In this section, we present the extended spectral evaluation of SRR outputs, which is
built on top of the aforementioned SIAM system (Baraldi 2011) to produce knowl-
edge-based, spectral categorizations of both SRR outputs and corresponding refer-
ence data. The physical model-based expert system is capable of handling any multi-
spectral image data that are radiometrically calibrated to at least top of atmosphere
(TOA) reflectance. SIAM is a point-wise operator and maps reflectances into a discrete
and finite vocabulary of semi-symbolic spectral categories. The categories do not
represent immediate land use or land cover classes, as these high-level semantic
concepts cannot be derived in an unambiguous way solely on a per-pixel basis.
Confusions of concepts that may have the same spectral signatures, such as between
shadows and water, can only be resolved by adding spatial context information
(texture, object size, shape and neighbourhood). SIAM categories represent an inter-
mediate level of semantic enrichment that can be derived from the spectral informa-
tion, and their visualized symbolization is indicative of the colour perceived by the
human eye. Using SIAM, the extensive multi-dimensional continuous data space is
reduced down to essential information components that can be represented as an 8-
bit discrete output raster. The derived categories are application-independent,
mutually exclusive and collectively exhaustive and are shown in Table 2.

SIAM has several sensor modes, allowing it to be applied to a range of multi-
spectral inputs despite different available bands. For SRR data, the Landsat-like sensor
mode is used, which incorporates six bands (Red, Green, Blue, NIR, SWIRT and SWIR2)
to output the spectral categorization. For the SD data, the very high-resolution (VHR)-
like sensor mode is used, utilizing four bands (Red, Green, Blue and NIR). Both of
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Table 2. SIAM categories with their colour symbolization, abbreviations and descriptions.

SVHNIR Strong vegetation with high NIR
SVLNIR Strong vegetation with low NIR
AVHNIR Average vegetation with high NIR
AVLNIR Average vegetation with low NIR
wv Weak vegetation

VSH_VWA_TWASH

Vegetation in shadow or vegetation in water or
turbid water or shadow

SHRBRHNIR Shrub rangeland with high NIR
SHRBRLNIR Shrub rangeland with low NIR
HRBCR Herbaceous rangeland
WR Weak rangeland
I P8 Pit bog
GH Greenhouse
VBBB Very bright Bare soil (barren land) or built-up
BBB Bright bare soil (barren land) or built-up
SBB Strong bare soil (barren land) or built-up
ABB Average bare soil (barren land) or built-up
DBB Dark bare soil (barren land) or built-up
Weak bare soil (barren land) or built-up or bare
WBB_BBSH soil (barren Ianfj) or built-u)p in shadof/)v
NIRPBB :;ljﬁtr_lijr:)frared—peaked bare soil (barren land) or
BA Burned area
DPWASH Deep water or shadow
SLWASH Shallow water or shadow
TWASH Turbid water or shadow
SASLWA Salty shallow water
CL Cloud
SMKPLM Smoke plume
TNCLV Thin cloud over vegetation
TNCLWA BB Z?iguci:g:(:)s over water or bare soil (barren land)
SN_WAICE Snow or water ice
SNSH Snow in shadow
SH Shadow areas
FLAME Flame, active fire
UN Unknown
MASKED_NO_DATA No data

SIAM'’s sensor modes are applied to S2 data to better assess undesirable differences
in spectral categorization compared to the SD and SRR data, and avoid false positives
in the detection of spectral changes.

To perform the SRR-inherent cross-sensor comparisons, we leverage a fundamen-
tal property of SIAM, which is the production of outputs according to a sensor-mode-
agnostic, harmonizing taxonomy with 33 spectral categories. Given these 33 catego-
rical outputs, a categorization of differences that occur between two outputs can be
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performed using the two-dimensional change matrix of dimension 33 x 33.
Following Baraldi et al. (2023), the 1089 potential combinations of SIAM categories
are aggregated into a set of 30 change categories, grouping semantically similar
changes to reduce the complexity of the change matrix. All pairs of SIAM categories
that indicate a vegetation increase, for example, are subsumed under a single, new
combination category. Twenty-one of these 30 aggregated change categories repre-
sent actual change categories, while the remaining ones, located on the diagonal of
the change matrix, represent constant spectral signatures or negligible changes. In a
final step, a weighting scheme assigns a severity level to each of the 21 change
categories. Calculating unweighted confusion statistics on categorical maps proves
inadequate due to the varying granularity in space discretization inherent to SIAM.
For example, there are numerous vegetation-like categories, but only a few water-like
categories. Changes from one vegetation-like category to another are likely, even
with minor changes in the spectral signature, but they are less pronounced than a
change from a vegetation-like category to a water-like category, for example.
Changes within a super-set of categories (e.g. within vegetation or soil-like cate-
gories) are considered minor changes. All remaining change categories indicate
major, more severe changes. The resulting SIAM change matrix is presented in
Table 3 along with its legend in Table 4. Aggregated change categories are coloured
and represented by a combination of letters and numbers, where the letter indicates
the severity grouping and the number distinguishes between different types of
changes from a semantic perspective.

Table 3. Change matrix for SIAM categories. The first column and row denote the SIAM categorizations for
two data pairs T1 and T2. For a breakdown of the SIAM abbreviations, see Table 2. The changes are
categorized within the matrix; a corresponding breakdown of these change categories can be found in
Table 4.
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Note that the definition of aggregation rules towards a set of aggregated change
categories, as well as the assignment of severity, were carried out in an expert-based
manner. Other experts may come to a different conclusion regarding the aggrega-
tion and categorization of the changes. Nevertheless, this approach enables a knowl-
edge-based categorization of spectral changes in a transparent and reproducible
manner.

Table 4. SIAM change categories grouped by severity.

A, | Vegetation total gain from bare soil or built-up or fire

A, | Vegetation total loss into bare soil or built-up

A3 | Vegetation total gain from water (or shadow)

A4 | Vegetation total loss into water (or shadow)

As | Single-date vegetation

Ag | Bare soil or built-up total gain from water (or shadow)
A7 | Bare soil or built-up total loss into water (or shadow)
Ag | Single-date water (or shadow)

Ag | Single-date bare soil

Ao | Single-date snow (or shadowed snow)

Snow (or bright bare soil/built-up or cloud in VHR imagery)

major, severe
changes

An total gain

Vegetation from snow (or bright bare soil/built-up or cloud
Al . .

in VHR imagery)

Bare soil or built-up from snow (or bright bare soil/built-up
Aas ; .

or cloud in VHR imagery)
A Water (or shadow) from snow (or bright bare soil/built-up

14

or cloud in VHR imagery)
A5 | Single-date shadowed snow
A6 | Single-date flame

A7 | Active flame

Aig | Single-date cloud

B1 | Vegetation decrease
Vegetation increase

minor
changes
@
N

B3 | Within-bare soil or built-up change

C; | Constant vegetation

C, | Constant bare soil or built-up

C3 | Constant water (or shadow)

C4 | Constant cloud or single-date cloud

Constant snow (or bright bare soil/built-up or cloud in VHR
imagery)

Ce | Constant shadowed snow

C; | Constant shadow

Cg | Constant flame

Cgy | Constant unknown or noisy

no
change
N
w
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5. Results and discussion

In this section, we present the results of our SRR approach with a main focus on the
evaluation of the spectral stability and fidelity of the SRR output in relation to the S2 input,
as well as the SD reference. In particular, we start with a qualitative inspection of the
results (Section 5.1), followed by a standard quantitative evaluation using common IQA
metrics (Section 5.2). Next, we present the complementary qualitative and quantitative
results for our own extended evaluation framework (Section 5.3) and conclude with a
report on the time performance of our proposed pipeline (Section 5.4).

5.1. Qualitative inspection

In Figure 1, we provide the SRR output (bottom) of a single S2 input patch (top) across
several bands from the portion of our S2 test dataset corresponding to granule 33UWP
acquired in 2021 (see Section 3.1), to allow for a quick visual assessment of the achieved
image quality. This visual comparison shows a substantially higher spatial resolution in
the SRR output with a sharp delineation of the various different structures. This is most
visible in the super-resolved 20 m bands B05 and B11. Also, the SRR appears to perform
equally well on agricultural and build-up land without introducing any obvious artefacts.

In Figure 5, we provide a more detailed comparison of the S2 input and SRR
output focusing on the spectral profiles derived from agricultural land parcels as
required by many downstream tasks. We have selected patches from a different
year (2023) and different locations in Austria not included in our training, valida-
tion and test data to demonstrate the transferability to unseen locations within the
same biome. Again, the visual comparison of RGB bands of S2 (left) and SRR
(middle) reveals sharper delineations of agricultural land parcels without introdu-
cing artefacts. However, the SRR output appears darker than the input, which
suggests slightly lower reflectance values in the bands B02, B03 and B04. This is
confirmed by a direct comparison of reflectance profiles (right). To obtain these
reflectance profiles, the reflectance values of all pixels fully contained within the
polygon of a parcel (red) have been averaged per band and then plotted. While
the reflectance profiles are generally in good agreement, the reflectance in the RGB
bands is generally slightly lower than in the input. On the other hand, the NIR
band B08 exhibits a higher degree of variation and is often overestimated, in
particular across bare soil (bottom row). One possible cause of this variation is
that, as discussed in Section 3.1, we use SD band B8 as reference data for S2 band
B0O8 during training, even though the latter has a considerably wider wavelength
range, which leads to a lower spectral correspondence and possibly lower SRR
performance than in the RGB bands. Furthermore, as reported by Yu-Hsuan et al.
(2022), the SD data exhibit a generally higher variance in the NIR band as well as a
slight underestimation of reflectance values on reflective surfaces. In summary, we
can deduce from these observations that the SRR provides visually reasonable
results. The extent to which the spectral deviations occur systematically is analysed
in Section 5.3.
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Figure 5. Results of our approach compared to the low-resolution input. RGB bands of S2 input from

year 2023 (left) and SRR output (middle) as well as reflectance profiles (right) averaged over an
agricultural land parcel (red).

5.2. Image quality assessment

To assess the quality of reconstructed images via common IQA metrics, we use the PSNR
and the SSIM between reference test data and SRR outcomes. PSNR quantifies the
difference between query samples using the logarithmic ratio of the maximum possible
pixel value to the MSE. SSIM, on the other hand, evaluates quality by comparing structural
information, luminance and contrast of query images (Z. Wang et al. 2004).

We perform the RGB+NIR SRR evaluation on the 1235 S2 and SD test pairs (see Section
3.1). The model achieves an average PSNR of 31.00 for the RGB bands and 26.23 for the
NIR band. Moreover, it obtains an average SSIM of 0.911 for the RGB bands and 0.818 for
the NIR band. The results indicate that both the PSNR and SSIM values calculated for the
NIR band are inferior to those obtained for the RGB bands. As mentioned in Section 5.1,
we attribute this again to the higher variance of the NIR signals in the SD imagery product,
as observed, e.g., by Yu-Hsuan et al. (2022).

Moreover, we evaluate the performance of the RE+SWIR SRR model on the S2 RE, Narrow
Near-Infrared (NNIR), and SWIR bands using the 29,033 S2 test patches (see Section 3.1). We
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obtain an average PSNR of 38.34 and an average SSIM of 0.979 for the RE and NNIR bands
(BO5, BO6, BO7, B8A) and an average PSNR of 33.25 and an average SSIM of 0.939 for the SWIR
bands (B11, B12). As discussed by Lanaras et al. (2018), the performance drop of the model for
the SWIR bands can be attributed to the fact that these bands lie far outside the spectral range
covered by high-resolution RGB+NIR images utilized as auxiliary input to the network.

The above IQA results exhibit a comparable trend to those reported in related works
(described in Section 2.1). However, a direct quantitative comparison is not possible due
to large differences in the datasets employed.

5.3. Spectral, knowledge-based evaluation

SRR Landsat-like vs. 52 Landsat-like SRR Landsat-like vs. 52 VHR-like SRR Landsat-like vs. SD VHR-like

1.0 140
g 120
o8
2 g
o 100 g
=] o
go.s 80 E
s S
5 0.4 60 é
g 40 3
20.2 1 =
g .(0.21,0.12) A2, gy (0.23, 0.11) 20

+(0.19, 0.08) *(0.24, 0.09) .'
oo MENNSSSES—— | |SEESesesseeSme MEEEAGTON wmom |
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Proportion of Minor Changes Proportion of Minor Changes Proportion of Minor Changes

Figure 6. Bivariate frequencies of the patch-wise proportion of minor and major changes in the SIAM
categorizations between SRR outputs and input data. Mean (red) and median (purple) values across all
S2, SD and SRR patches of the 1235 test pairs are marked by dots. Definitions of minor and major
changes are given in Table 4.

The SIAM change approach, outlined in Section 4, enables in-depth spectral validation. We
start with a macroscopic comparison of global statistics of SIAM categorization changes
between the SRR output and the input products provided in Figure 6. The histograms of
Figure 6 show a binning of test patches according to their proportion of minor (horizontal
axis) and of major (vertical axis) categorization changes relative to the total number of pixels in
a patch. The applied transfer function reveals that most patches are binned in the bottom left
part of the histograms, indicating a low number of changes in the majority of tiles. This is
supported by the indicated mean and median proportion of minor and major categorization
changes over all S2, SD and SRR patches of the 1235 test pairs (see Section 3.1). Summed up,
the mean proportion of changed categories is equal to or below 40% in all three cases. Most of
the changes are categorized as minor changes. For the S2 input, we can perform the under-
lying categorization either with six bands in Landsat-like mode (left) or with four bands in VHR-
like mode (middle) and compare to the SRR categorizations in the same mode. In the SD input
data, only the four bands required for VHR-like mode (right) are available. As noted in Section
4, using different sensor modes on the same data does not lead to the same categorization.
Since SD can only be categorized in VHR-like mode, a fair assessment of the similarity between
S2 and SD inputs and SRR outputs therefore involves a comparison of both input datasets in
this mode. The corresponding histograms in Figure 6 show that the SRR outputs have a
substantially greater spectral similarity to the SD data (right) than to the S2 data (middle), in
particular with regard to major changes. The mean proportion of major changes amounts to
11% for SD (right) and 14% for S2 (middle).
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Figure 7. Bivariate histogram of SIAM changes showing a comparison of SRR with S2 categorizations.
The individual cells represent the relative frequency of occurrence of a specific SIAM change across all
S2 and SRR patches of the 1235 test pairs.
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The individual cells represent the relative frequency of occurrence of a specific SIAM change across all
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Figure 9. Differential bivariate histogram of individual SIAM changes. Subtracting the histogram in
Figure 7 from the one in Figure 8, the differences in the proportion of category transitions between SD
and S2, each as a reference to SRR outputs, are shown.

For a more detailed consideration of the comparisons of the SRR categorization with the
reference data, a breakdown of the frequencies by individual spectral categories is presented
in Figure 7 for S2 data and in Figure 8 for SD data. According to the selection of patches with a
focus on agricultural areas, approximately 80% of all areas are categorized as vegetation-like,
both in the original data and in the SRR outputs. This can be seen from the row and column
totals in Figures 7 and 8. Confirming the previous observation on the dominance of non-severe
changes, a large portion of the category transitions occur within super-sets of categories (e.g.
within vegetation-like or within bare soil-like categories). Changes classified as severe are
primarily transitions from bare soil categories in the original data to weak vegetation in the SRR
outputs. The complementary change (i.e. pixels categorized as weak vegetation in the original
data and categorized as bare soil in the SRR outputs) also occurs, albeit with lower frequency,
as can be seen in the area below the main diagonal in Figures 7 and 8. This unidirectional shift
in categorizations from bare soil to vegetation-like signatures is likely to be caused by elevated
NIR reflectances in SRR outputs as previously noted in Section 5.1. The change matrix approach
provides strong evidence that the previous qualitative observations are not merely isolated
cases but point to a systematic bias. Other substantial changes identifiable in Figures 7 and 8
involve re-categorization of original dark soil pixels as water or shadow-like pixels in the SRR
outputs. Again, the complementary process is much less pronounced here. Finally, the re-
categorization of original pixels categorized as clouds, ice or snow also contributes to the
substantial changes. The proportion of unknown spectral signatures averages 0.17% for SD,
0.37% for S2 and 1.43% for the SRR outputs. While the SRR data thus overall reconstructs the
input data well, there are some systematic SRR model biases along with an increased propor-
tion of signatures that cannot be interpreted physically using a knowledge-based classifier.
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Comparing the spectral categorization of SRR outputs to S2 and SD categorizations in a
differential manner (see Figure 9), it is evident that especially for strong vegetation categories
encoded in the top left, the SRR outputs exhibit fewer changes in comparison with SD than
with S2. The higher stability of the SIAM category changes for the SD-SRR comparison is
apparent from the positive values on the main diagonal. The greater severity of changes in the
comparison between S2 and SRR can be mainly inferred from two observations: First, a higher
proportion of pixels are mapped as strong vegetation (SVHNIR), which were originally
categorized as other types of vegetation (see first row in Figure 9). Second, a higher propor-
tion of pixels are marked as shrubland (SHRBRHNIR), which were originally categorized as bog
or bare soil (see seventh row in Figure 9). These observations, given by the aggregated
statistics, are reflected in an example shown in Figure 10, where SIAM categorizations with the
corresponding classification of change severities are visualized for a single patch from our
1235 test pairs (see Section 3.1). In this case, the severe changes originate mainly from soil-like
and vegetation-like confusions between S2 and SRR, which are less prominent between SD
and SRR. Also, the poorer spatial resolution of S2 leads to an increased level of changes, in
particular at object boundaries. However, the proportion of these resolution-related, line-like
changes is marginal compared to the areal changes of entire fields.

5.4. Time performance

We measure the inference throughput of our multi-spectral SRR pipeline (see Section 3.4) for
super-resolving the 1280 m x 1280 m patches introduced in Section 3.1, as well as the
throughput for SIAM categorizations. For every patch, the RGB+NIR SRR module reconstructs
the four 10 m S2 bands, and the RE+SWIR SRR model upscales the six 20 m S2 bands. When
applied to the 1235 test pairs (see Section 3.1), our pipeline, including both SRR modules,
processes on average 11.11 patches per second on an NVIDIA L40S GPU based on all S2
patches, while the SIAM system evaluates on average 0.54 patches per second on an AMD
Ryzen 7 5800H CPU with 32 GB RAM using all S2, SD and SRR patches.

SRR Landsat-like S2 Landsat-like S2 VHR-like SD VHR-like
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Figure 10. SIAM categorisations (top row) and change evaluations (bottom row) for an individual
patch. Changes are measured relative to the SRR result. Severe changes are visualised in dark-red,
minor changes in orange. The legend shows the colour scheme of the SIAM categorisations, for more
details the reader is referred to Table 2.
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6. Conclusion

We have introduced a holistic pipeline that upscales S2 imagery by a deep learning-based
single-image super-resolution reconstruction approach and provides a comprehensive eva-
luation framework to assess the spectral fidelity of the reconstructed outcomes. Our approach
focuses on maintaining validity across multiple spectral bands while improving the spatial
resolution and comprises a novel combination of two CNNs dedicated to the SRR of 10 m
bands and 20 m bands, respectively. Both models are designed to upsample images to a
spatial resolution of 2.5 m. The first model is trained with corresponding pairs of S2 and SD
images, while the second model is trained without reference images from an auxiliary satellite.

Beyond qualitative inspections and IQA-based quantifications, we adapted a novel
knowledge-based spectral categorization system to derive in-depth insights on the spectral
properties of the SRR approach on various aggregation levels. The promising
results in all of these evaluation environments suggest that the presented SRR approach
has a great potential for subsequent agricultural applications. Moreover, the spectral
categorization framework allowed to derive quantitative statistics that helped uncover
systematic biases of the SRR pipeline, which could be easily described due to the semantics
inherent to our approach. Looking ahead, we firmly believe that this has the potential to
facilitate iterative SRR model improvements as well as to enhance trust in SRR products,
resulting in an improved applicability of SRR models for downstream tasks such as land use
classification. Even though we discussed the results in the context of applications in the
agricultural domain, we want to emphasize that neither our SRR approach nor our approach
to spectral evaluation is restricted to these applications.
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